👤

Triangle ABC is an isosceles triangle. Angles B and C are base angles, with measurements of (11x −10)° and (7x + 10)°, respectively. What is m∠A?5°90°85°35°

Answer :

Given:

Triangle ABC is an isosceles triangle. Angles B and C are base angles, with measurements of

[tex]\begin{gathered} \angle B=(11x-10)\degree \\ \angle C=(7x+10)\degree \end{gathered}[/tex]

Required:

To find the angle A.

Explanation:

Triangle ABC is an isosceles triangle.

Therefore,

[tex]\angle B=\angle C[/tex][tex]\begin{gathered} 11x-10=7x+10 \\ 11x-7x=10+10 \\ 4x=20 \\ x=\frac{20}{4} \\ \\ x=5 \end{gathered}[/tex]

Now,

[tex]\begin{gathered} \angle B=11(5)-10 \\ =55-10 \\ =45\degree \\ \\ \angle C=7(5)+10 \\ =35+10 \\ =45\degree \end{gathered}[/tex]

The angle A is,

[tex]\begin{gathered} \angle A+\angle B+\angle C=180 \\ \angle A=180-45-45 \\ \angle A=90\degree \end{gathered}[/tex]

Final Answer:

[tex]\angle A=90\degree[/tex]