Answer :
R(6,-2)
T(-9,-7)
RS:ST = 3:2
To find the x coordinate of the point S we use the next equation:
[tex]X_S=X_R-r(X_R-X_T)[/tex]Where the r is the ratio expressed as a fraction
[tex]r=\frac{\text{3}}{5}[/tex]Then:
[tex]X_S=6_{}-\frac{3}{5}(6_{}-(-9)_{})[/tex][tex]X_S=6-\frac{3}{5}(6+9)=6-\frac{3}{5}(15)=6-\frac{45}{5}=6-9=-3[/tex]Then the y coordinate of the point S is determined by:
[tex]Y_S=Y_R-r(Y_R-Y_T)[/tex][tex]Y_S=-2-\frac{3}{5}(-2-(-7))[/tex][tex]Y_S=-2-\frac{3}{5}(5)=-2-\frac{15}{5}=-2-3=-5[/tex]Then so, the coordinated of the point S are:(-3 , - 5)