Answer :
[tex](2,4)[/tex]Explanation
given the system
[tex]\begin{gathered} x+y=6\Rightarrow equation(1) \\ y=3x-2\Rightarrow equation(2) \end{gathered}[/tex]Step 1
a) substitute the y value from equationi (2) into equation(1) , then solve for x
so
[tex]\begin{gathered} x+y=6 \\ replace\text{ the y value from equation \lparen2\rparen} \\ x+(3x-2)=6 \\ add\text{ like terms} \\ 4x-2=6 \\ add\text{ 2 in both sides} \\ 4x-2+2=6+2 \\ 4x=8 \\ divide\text{ both sides by 4} \\ \frac{4x}{4}=\frac{8}{4} \\ x=2 \end{gathered}[/tex]so
x=2
Step 2
now, replace the x value in equation (1) and solve for y
[tex]\begin{gathered} x+y=6\Rightarrow equation(1) \\ replace\text{ the x value and solve for y} \\ 2+y=6 \\ subtract\text{ 2 in both sides} \\ 2+y-2=6-2 \\ y=4 \end{gathered}[/tex]so
y=4
so, the ordered pair
[tex](2,4)[/tex]I hope this helps you