Answer :
Given the equation
[tex]3(x+1)\text{ = 4(}\frac{3}{5}x\text{ +3)}[/tex]Step 1
Open brackets by multiplying the terms in the brackets by the outer factors.
[tex]3x\text{ + 3 = }\frac{12}{5}x\text{ +12}[/tex]Step 2
Collect like terms.
[tex]\begin{gathered} 3x-\frac{12}{5}x=12-3 \\ \frac{3}{5}x=8 \end{gathered}[/tex]Step 3
Multiply both sides by 5, to remove the fraction.
[tex]\begin{gathered} 5\text{ }\times\frac{3}{5}x\text{ = 8 }\times\text{ 5} \\ \Rightarrow3x=40 \end{gathered}[/tex]Step 4
Divide both sides by the coefficient of x.
[tex]\begin{gathered} \text{The coefficient of x is 3} \\ \text{Thus,} \\ \frac{3x}{3}=\frac{8}{3} \\ \Rightarrow x=\frac{8}{3} \end{gathered}[/tex]Hence, the solution to the equation is
[tex]x=\frac{8}{3}[/tex]