Answer :
Quadratic Equations
The general form of a quadratic equation is:
[tex]ax^2+bx+c=0[/tex]Where a, b, and c are constants.
We can solve the quadratic equation by using the following formula:
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]The equation:
[tex]8x^2+7x+1=0[/tex]Has the coefficients a = 8, b = 7, c = 1. Substituting:
[tex]x=\frac{-7\pm\sqrt[]{7^2-4\cdot8\cdot1}}{2\cdot8}[/tex]Operating:
[tex]\begin{gathered} x=\frac{-7\pm\sqrt[]{49-32}}{16} \\ x=\frac{-7\pm\sqrt[]{17}}{16} \end{gathered}[/tex]There are two real solutions:
[tex]\begin{gathered} x_1=\frac{-7+\sqrt[]{17}}{16} \\ x_2=\frac{-7-\sqrt[]{17}}{16} \end{gathered}[/tex]Calculating:
x1 = -0.18
x2 = -0.70