👤

Answer :

Quadratic Equations

The general form of a quadratic equation is:

[tex]ax^2+bx+c=0[/tex]

Where a, b, and c are constants.

We can solve the quadratic equation by using the following formula:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

The equation:

[tex]8x^2+7x+1=0[/tex]

Has the coefficients a = 8, b = 7, c = 1. Substituting:

[tex]x=\frac{-7\pm\sqrt[]{7^2-4\cdot8\cdot1}}{2\cdot8}[/tex]

Operating:

[tex]\begin{gathered} x=\frac{-7\pm\sqrt[]{49-32}}{16} \\ x=\frac{-7\pm\sqrt[]{17}}{16} \end{gathered}[/tex]

There are two real solutions:

[tex]\begin{gathered} x_1=\frac{-7+\sqrt[]{17}}{16} \\ x_2=\frac{-7-\sqrt[]{17}}{16} \end{gathered}[/tex]

Calculating:

x1 = -0.18

x2 = -0.70