👤

Answer :

EXPLANATION

Filling the equation give us the following expression:

x^2 -14x + 36 = 0

Applying the square root relationship:

[tex]x_1,x_2=\frac{-b\pm\sqrt[]{b^2-4\cdot a\cdot c}}{2\cdot a}[/tex]

Where a=1, b=-14, c=36

Replacing terms:

[tex]x_1,x_2=\frac{-(-14)\pm\sqrt[]{(14)^2-4\cdot1\cdot36}}{2\cdot1}[/tex]

Multiplying numbers:

[tex]x_1,x_2=\frac{14\pm\sqrt[]{196-144}}{2}[/tex]

Subtracting numbers:

[tex]x_1,x_2=\frac{14\pm\sqrt[]{52}}{2}[/tex]

Solving the square root:

[tex]x_{1,}x_2=\frac{14\pm2\sqrt[]{13}}{2}[/tex]

The solutions are:

[tex]x_1=\frac{14+2\sqrt[]{13}}{2}=7+\sqrt[]{13}[/tex][tex]x_2=7-\sqrt[]{13}[/tex]

Go Teaching: Other Questions