1) Solve the following quadritic equations by completing the square: i) X ² + 12x + = 15t 2 (i) x ~ 14x + 36=0

EXPLANATION
Filling the equation give us the following expression:
x^2 -14x + 36 = 0
Applying the square root relationship:
[tex]x_1,x_2=\frac{-b\pm\sqrt[]{b^2-4\cdot a\cdot c}}{2\cdot a}[/tex]Where a=1, b=-14, c=36
Replacing terms:
[tex]x_1,x_2=\frac{-(-14)\pm\sqrt[]{(14)^2-4\cdot1\cdot36}}{2\cdot1}[/tex]Multiplying numbers:
[tex]x_1,x_2=\frac{14\pm\sqrt[]{196-144}}{2}[/tex]Subtracting numbers:
[tex]x_1,x_2=\frac{14\pm\sqrt[]{52}}{2}[/tex]Solving the square root:
[tex]x_{1,}x_2=\frac{14\pm2\sqrt[]{13}}{2}[/tex]The solutions are:
[tex]x_1=\frac{14+2\sqrt[]{13}}{2}=7+\sqrt[]{13}[/tex][tex]x_2=7-\sqrt[]{13}[/tex]