Answer :
ANSWER:
[tex]P(R)=\frac{3}{10}[/tex]STEP-BY-STEP EXPLANATION:
We have the following probabilities:
[tex]\begin{gathered} P(B)=10\text{\% } \\ P(G)=60\text{\% } \end{gathered}[/tex]Fractionally it would be:
[tex]\begin{gathered} P(B)=\frac{1}{10} \\ P(G)=\frac{6}{10} \end{gathered}[/tex]Now we know that the sum of all the probabilities must be one, therefore
[tex]\begin{gathered} 1=P(G)+P(B)+P(R) \\ \text{replacing:} \\ P(R)=1-P(G)-P(B) \\ P(R)=1-\frac{1}{10}-\frac{6}{10} \\ P(R)=\frac{10}{10}-\frac{1}{10}-\frac{6}{10} \\ P(R)=\frac{3}{10} \end{gathered}[/tex]