👤

Answer :

[tex]4\cos ^2x+1=2[/tex]

Subtract 1 from both sides

[tex]\begin{gathered} 4\cos ^2x+1-1=2-1 \\ 4\cos ^2x=1 \end{gathered}[/tex]

Divide both sides by 4

[tex]\begin{gathered} \frac{4cos^2x}{4}=\frac{1}{4} \\ \cos ^2x=\frac{1}{4} \end{gathered}[/tex]

Now, we will take square root for both sides to find cos x

[tex]\begin{gathered} \cos x=\sqrt[]{\frac{1}{4}} \\ \cos x=\frac{1}{2};\cos x=-\frac{1}{2} \end{gathered}[/tex]

Square root give two answers, one + and the other -

Now we will find the angles which have cos = 1/2 or -1/2

[tex]\begin{gathered} x=\cos ^{-1}(\frac{1}{2}) \\ x=\frac{\pi}{3} \end{gathered}[/tex]

The answer is C