solve for x for an exponential equation of 5^(x-2) + 5^(x+1) = 126

The expression is given as
[tex]5^{x-2}+5^{x+1}=126[/tex]Solve for x.
[tex]\frac{5^x}{5^2}+5^x\times5=126[/tex][tex]5^x(\frac{1}{25}+5)=126[/tex][tex]5^x(\frac{1+125}{25})=126[/tex][tex]5^x\times\frac{126}{25}=126[/tex][tex]5^x=25[/tex][tex]5^x=5^2[/tex]Compare the power and find the value of x.
[tex]x=2[/tex]Hence the value of x is 2.