Answer :
The volume of the smaller box is given as:
[tex]\begin{gathered} V_s=2\text{ in}\times2\text{ in}\times2\text{ in} \\ V_s=8in^3 \end{gathered}[/tex]Assume the length and width as:
[tex]\begin{gathered} L<30\text{ in} \\ L=28\text{ in} \\ W<14\text{ in} \\ W=12\text{ in} \end{gathered}[/tex]The height of the display is 2 layers, one layer height is 2 in, therefore the total height of the display is 4 in.
[tex]H\text{ = 4 in}[/tex]The expression for the total number of boxes is given as:
[tex]\begin{gathered} N=\frac{L\times W\times H}{V_s} \\ N=\frac{28\text{ in}\times12\text{ in}\times4\text{ in}}{8\text{ in}} \\ N=168 \end{gathered}[/tex]Thus, the number of boxes stacked is 168 boxes.
One of the possible ways for the arrangement of boxes is: 14 boxes are stacked in length, 6 for width, and 2 for height.