👤

Answer :

[tex](\frac{2}{3}x-1)+(\frac{3}{4}x+7)[/tex]

we can remove the parenthesis

[tex]\frac{2}{3}x-1+\frac{3}{4}x+7[/tex]

group the expression with X and the numbers, then operate

[tex]\begin{gathered} (\frac{2}{3}+\frac{3}{4})x+(-1+7) \\ \\ (\frac{(4\times2)+(3\times3)}{3\times4})x+6 \\ \\ (\frac{8+9}{12})x+6 \\ \\ \frac{17}{12}x+6 \end{gathered}[/tex]

we can represent the fraction as a mixed number because the numerato is greatr than the denominator

[tex]\frac{17}{12}\longrightarrow1\frac{5}{12}[/tex]

so the final expression is

[tex]1\frac{5}{12}x+6[/tex]

then the right option is the third