👤

Answer :

Remember that

A function is an even function if f of x is equal to f of −x for all the values of x

and

f(x) is an odd function when f(-x) = -f(x)

Verify each function

N 1

we have

[tex]f(x)=\lvert x\rvert[/tex]

we have that

f(x)=f(-x) -----> that means even function

N 2

we have

f(x)=2

so

f(x)=f(-x) ---> that means even function

N 3

we have

[tex]f(x)=\frac{x^3+x}{3+x^2}[/tex]

we have that

f(-x)=-f(x) -----> is a odd function

N 4

we have

[tex]f(x)=\lvert x\rvert x[/tex]

Verify if the function is odd

[tex]\begin{gathered} f(-x)=\lvert-x\rvert(-x)=-x^2 \\ -f(x)=-x^2 \end{gathered}[/tex]