If the surface area of the cone below is 628.32, find its volume. (Diameter is 16)

To solve the question given
We will follow the steps below
First, the surface area is given to be 628.32
diameter = 16 this implies that radius = d/2 = 16/2 = 8
First, using the formula
surface area of a cone = πr² + πrl
we will find l
remember that π= 3.14
substituting the values into the above formula
surface area of a cone = πr² + πrl
628.32 = 3.14(8)² + 3.14(8)l
Next is to solve for l
628.32 = 200.96 +25.12 l
subtract 200.96 from both-side of the equation
628.32 - 200.96= 200.96 - 200.96 +25.12 l
427.36 = 25.12 l
Divide both-side of the equation by 25.12
427.36/25.12 = 25.12 l/25.12
17.01 = l
slant height (l) = 17.01
We can now calculate the volume of the cone using the formula:
[tex]V\text{ = }\frac{1}{3}\pi r^2\sqrt{l^2-r^2}[/tex]substituting r=8 π = 3.14 and l = 17.01 in the above formula
[tex]V=\frac{1}{3}\text{ }\times3.14\times(8)^2\text{ }\times\sqrt{(17.01)^2-(8)^2}[/tex][tex]V=\text{ }\frac{1}{3\text{ }}\times3.14\times64\text{ }\times\sqrt{289.3401\text{ - 64}}[/tex][tex]V=\text{ }\frac{1}{3}\times200.96\text{ }\times\sqrt{225.3401}[/tex][tex]V\text{ =}\frac{1}{3}\times\text{ 200.96}\times15.01[/tex][tex]V\text{ = }\frac{3016.4096}{3}[/tex]V=1005.47
Volume of the cone is 1 005.47