👤

Answer :

You have the following equation:

[tex]4y^2-16y-24=0[/tex]

In order to solve the equation, use the quadratic formula:

[tex]y=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

In this case:

a = 4

b = -16

c = -24

Replace the previous values of the parameters into the quadratic formula and simplify:

[tex]\begin{gathered} y=\frac{-(-16)\pm\sqrt[]{(-16)^2-4(4)(-24)}}{2(4)} \\ y=\frac{16\pm\sqrt[]{640}}{8} \end{gathered}[/tex]

Hence, the solutions for the given equation are:

[tex]\begin{gathered} y_1=2+\frac{\sqrt[]{640}}{8} \\ y_2=2-\frac{\sqrt[]{640}}{8} \end{gathered}[/tex]

Go Teaching: Other Questions