👤

Answer :

A true equiation has a real solution, for example

[tex]\frac{3}{x}+x=\frac{7}{2}[/tex]

is true equation because you can find the value of x

multiply X to both sides

[tex]\begin{gathered} \frac{3}{x}(x)+x(x)=\frac{7}{2}x \\ \end{gathered}[/tex][tex]\begin{gathered} 3+x^2=\frac{7}{2}x \\ x^2-\frac{7}{2}x+3=0 \end{gathered}[/tex]

and you can factorize and solve

[tex]\begin{gathered} (x-2)(x-\frac{3}{2})=0 \\ \end{gathered}[/tex]

It has two solutions for x

[tex]\begin{gathered} (x_1-2)=0 \\ x_1=2 \\ (x_2-\frac{3}{2})=0 \\ x_2=\frac{3}{2} \end{gathered}[/tex]

and a false equation has not solution or is not real, for example

[tex]\sqrt[]{x}=-2[/tex]

this cant not be, because when you try to solve x you have:

[tex]\begin{gathered} x=(-2)^2 \\ x=4 \end{gathered}[/tex]

but when you replace to check equality

[tex]\begin{gathered} \sqrt[]{(4)}=-2 \\ 2\ne-2 \end{gathered}[/tex]

Go Teaching: Other Questions