Answer :
Given:
[tex]180.40=5\left\lbrack0.05m+29.80+0.10\left(29.80\right)]\right?[/tex]To find: The value of m?
Explanation:
We have given that
[tex]180.40=5\left\lbrack0.05m+29.80+0.10(29.80)\right\rbrack[/tex]First, we solve the brackets term
We get,
[tex]\begin{gathered} 180.40=5\left\lbrack0.05m+29.80+\left(0.10\times29.80\right)\right\rbrack \\ \\ 180.40=5\left\lbrack0.05m+29.80+2.98\right\rbrack \end{gathered}[/tex]We can write as
[tex]\begin{gathered} 18040\times10^{-2}=5\left\lbrack5\times10^{-2}m+2980\times10^{-2}+298\times10^{-2}\right? \\ \\ 18040\times10^{-2}=5\left\lbrack5m+2980+298\right\rbrack\times10^{-2} \\ \\ \frac{18040\times10^{-2}}{10^{-2}}=5\left\lbrack5m+3278\right\rbrack \\ \\ \frac{18040}{5}=5m+3278 \\ \\ 3608=5m+3278 \\ \\ 5m=3608-3278 \\ \\ 5m=330 \\ \\ m=\frac{330}{5} \\ \\ m=66 \end{gathered}[/tex]Hence, m = 66
Thus, the value of m = 66.