Answer :
Then To determine the standard deviation we first need the mean; the mean is given by:
[tex]\mu=\frac{1}{n}\sum_{i\mathop{=}1}^nx_i[/tex]Then we have:
[tex]\mu=\frac{1}{6}(26+7+23+15+29+24)=\frac{124}{6}=20.67[/tex]Now that we have the mean we can calculate the standard deviation which is given by:
[tex]\sigma=\sqrt{\frac{1}{n}\sum_{i\mathop{=}1}^n(x_i-\mu)^2}[/tex]Then we have:
[tex]\begin{gathered} \sigma=\sqrt{\frac{(26-20.67)^2+(7-20.67)^2+(23-20.67)^2+(15-20.67)^2+(29-20.67)^2+(24-20.67)^2}{6}} \\ \sigma=7.45 \end{gathered}[/tex]Therefore, the standard deviation is 7.45