👤

Answer :

[tex]x=\frac{24}{5}[/tex][tex]y=\frac{28}{5}[/tex]

Explanation

Step 1

Let

[tex]\begin{gathered} 4x+3y=36\text{ Equation(1)} \\ y=-\frac{1}{2}x+8\text{ Equation(2)} \end{gathered}[/tex]

Step 2

replace equation(2) in equation(1)

so

[tex]\begin{gathered} 4x+3y=36\text{ Equation(1)} \\ 4x+3(-\frac{1}{2}x+8)=36\text{ } \\ \text{operate} \\ 4x-\frac{3}{2}x+24=36 \\ \text{Add similar terms} \\ \frac{5}{2}x+24=36 \\ \text{subtract 24 in both sides} \\ \frac{5}{2}x+24-24=36-24 \\ \frac{5}{2}x=12 \\ \text{Multiply both sides by }\frac{2}{5} \\ \frac{5}{2}x\cdot\frac{2}{5}=12\cdot\frac{2}{5} \\ x=\frac{24}{5} \end{gathered}[/tex]

Step 3

[tex]\begin{gathered} y=-\frac{1}{2}x+8\text{ Equation(2)} \\ y=-\frac{1}{2}(\frac{24}{5})+8\text{ } \\ y=-\frac{24}{10}+8 \\ y=-\frac{12}{5}+8 \\ y=\frac{28}{5} \\ \end{gathered}[/tex]

replace x in equation (2).

I hope this helps you