👤

Answer :

ANSWER

[tex]\begin{gathered} \text{The equivalent expression is 3}\sqrt[]{6} \\ 3\sqrt[]{6} \end{gathered}[/tex]

OPTION C

STEP-BY-STEP EXPLANATION

Given expression

[tex]\sqrt[]{96}\text{ - }\sqrt[]{54}+\text{ }\sqrt[]{24}[/tex]

According to the law of surds,

[tex]\sqrt[]{A\text{ }\times\text{ B}}\text{ = }\sqrt[]{A}\times\sqrt[]{B}[/tex]

The next step is to simplify the surds separately

[tex]\begin{gathered} \sqrt[]{96}\text{ can be expr}essed\text{ as} \\ \sqrt[]{96}=\sqrt[]{16}\times\sqrt[]{6} \\ \text{recall that, }\sqrt[]{16}\text{ = 4} \\ \sqrt[]{96}\text{ = 4}\sqrt[]{6} \\ \\ \sqrt[]{54} \\ \sqrt[]{54}\text{ = }\sqrt[]{9}\text{ }\times\text{ }\sqrt[]{6} \\ \text{recall that, }\sqrt[]{9}\text{ = 3} \\ \sqrt[]{54}\text{ = 3}\sqrt[]{6} \\ \\ \sqrt[]{24} \\ \sqrt[]{24}\text{ =}\sqrt[]{4}\text{ }\times\text{ }\sqrt[]{6} \\ \text{recall that, }\sqrt[]{4}\text{ = 2} \\ \sqrt[]{24}\text{ = 2}\sqrt[]{6} \end{gathered}[/tex]

The next step is to simplify the expression

[tex]\begin{gathered} 4\sqrt[]{6}\text{ - 3}\sqrt[]{6}\text{ + 2}\sqrt[]{6} \\ \text{factor out }\sqrt[]{6} \\ =\sqrt[]{6}(4\text{ - 3 + 2)} \\ =\sqrt[]{6}\text{ (1 + 2)} \\ =\sqrt[]{6}\text{ (3)} \\ 3\sqrt[]{6} \end{gathered}[/tex]

Go Teaching: Other Questions