The length of the missing leg? If necessary around to the nearest 10th

To solve this, we can use the pythagorean theorem:
If we have a right triangle with its hyppotenuse and two legs:
[tex]\text{hyppotenuse}^2=\text{leg}1^2+\text{leg2}^2[/tex]We have:
hyppotenuse = 9ft
leg1 = 8ft
leg2 = a
Thus:
[tex](9ft)^2=(8ft)^2+^{}a^2[/tex]And solve:
[tex]\begin{gathered} a=\sqrt[]{(9ft)^2-(8ft)^2} \\ a=\sqrt[]{81ft^2-64ft^2} \\ a=\sqrt[]{17ft^2} \\ a\approx4.123105ft \end{gathered}[/tex]To the nearest tenth: a = 4.1ft