👤

Answer :

To solve this, we can use the pythagorean theorem:

If we have a right triangle with its hyppotenuse and two legs:

[tex]\text{hyppotenuse}^2=\text{leg}1^2+\text{leg2}^2[/tex]

We have:

hyppotenuse = 9ft

leg1 = 8ft

leg2 = a

Thus:

[tex](9ft)^2=(8ft)^2+^{}a^2[/tex]

And solve:

[tex]\begin{gathered} a=\sqrt[]{(9ft)^2-(8ft)^2} \\ a=\sqrt[]{81ft^2-64ft^2} \\ a=\sqrt[]{17ft^2} \\ a\approx4.123105ft \end{gathered}[/tex]

To the nearest tenth: a = 4.1ft