Answer :
Given the function :
[tex]f(x)=\sqrt[]{x+2}+1[/tex]We need to find each missing value
Given x = -3 , -2 , -1 , 2 , 7
So, substitute with each value of x to find the corresponding value of f(x)
[tex]x=-3\rightarrow f(x)=\sqrt[]{-3+2}+1=\sqrt[]{-1}+1[/tex]So, there is no value for f(x) at x = -3 (the function undefined because the square root of -1)
[tex]\begin{gathered} x=-2\rightarrow f(x)=\sqrt[]{-2+2}+1=\sqrt[]{0}+1=0+1=1 \\ \\ x=-1\rightarrow f(x)=\sqrt[]{-1+2}+1=\sqrt[]{1}+1=1+1=2 \\ \\ x=2\rightarrow f(x)=\sqrt[]{2+2}+1=\sqrt[]{4}+1=2+1=3 \\ \\ x=7\rightarrow f(x)=\sqrt[]{7+2}+1=\sqrt[]{9}+1=3+1=4 \end{gathered}[/tex]the graph of the function and the points will be as shown in the following image :
