Identify the distance between points (-3,0,-7) and (-8,-9,-11), and identify the midpoint of the segment for which these are the endpoints. round to the nearest tenth, if necessary.

To find the distance and the midpoint between those points, we just need to use the distance formula and the midpoint formula. The distance formula is
[tex]d((x_1,y_1,z_1),(x_2,y_2,z_2))=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}[/tex]and the midpoint formula is
[tex]M((x_1,y_1,z_1),(x_2,y_2,z_2))=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2},\frac{z_1+z_2}{2})[/tex]Using those formulas in our problem, for the distance we have
[tex]\begin{gathered} d((-3_{},0,-7),(-8,-9,-11)) \\ =\sqrt[]{((-8)-(-3))^2+((-9)-(0))^2+((-11)-(-7))^2} \\ =\sqrt[]{(-8+3)^2+(-9-0)^2+(-11+7)^2} \\ =\sqrt[]{(5)^2+(-9)^2+(-4)^2} \\ =\sqrt[]{25+81+16} \\ =11.0453610172\ldots\approx11.0 \end{gathered}[/tex]and for the Midpoint, we have
[tex]\begin{gathered} M((-3_{},0,-7),(-8,-9,-11)) \\ =(\frac{(-3)+(-8)_{}}{2},\frac{(0)+(-9)}{2},\frac{(-7)+(-11)_{}}{2}) \\ =(\frac{-3-8}{2},\frac{0-9}{2},\frac{-7-11_{}}{2}) \\ =(\frac{-11}{2},\frac{-9}{2},\frac{-18_{}}{2}) \\ =(-5.5,-4.5,-9) \end{gathered}[/tex]And those are our answers.
[tex]\begin{cases}d\approx11 \\ M(-5.5,-4.5,-9)\end{cases}[/tex]