Answer :
SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Convert the first mixed fraction to improper fraction
[tex]\begin{gathered} 4\frac{3}{5} \\ Multiply\text{ the denominator of the fraction by the whole number and add the numerator} \\ then\text{ write the result all over the denominator of the fraction} \\ \\ \frac{(5\times4)+3}{5}=\frac{20+3}{5}=\frac{23}{5} \\ \\ \therefore Improper\text{ }fraction=\frac{23}{5} \end{gathered}[/tex]STEP 2: Convert the second mixed fraction to improper fraction
[tex]\begin{gathered} -2\frac{2}{3} \\ Multiply\text{ the denominator of the fraction by the whole number and add the numerator} \\ then\text{ write the result all over the denominator of the fraction} \\ \\ -\frac{(3\times2)+3}{3}=-\frac{6+2}{3}=-\frac{8}{3} \\ \\ \therefore Improper\text{ }fraction=-\frac{8}{3} \end{gathered}[/tex]STEP 3: Convert the third mixed fraction to improper fraction
[tex]\begin{gathered} 11\frac{3}{7} \\ Multiply\text{ the denominator of the fraction by the whole number and add the numerator} \\ then\text{ write the result all over the denominator of the fraction} \\ \\ \frac{(7\times11)+3}{7}=\frac{77+3}{7}=\frac{80}{7} \\ \\ \therefore Improper\text{ }fraction=\frac{80}{7} \end{gathered}[/tex]