Answer :
Answer:
8.2
Explanation
Tyhe formula for calculating the margin of error is expressed as;
[tex]M\text{ = z}\times\sqrt[]{\frac{s^2}{n}}[/tex]z is the z-score at 95% confidence interval =
s is the standard deviation = 40 pounds
n is the sample size = 92
Substitute
[tex]M\text{ = }1.96\times\sqrt[]{\frac{40^2}{92}}[/tex]SOlve the resulting expression
[tex]\begin{gathered} M\text{ = 1.9}6\times\sqrt[]{\frac{1600}{92}} \\ M\text{ = 1.96 }\times\sqrt[]{17.391} \\ M\text{ = 1.96}\times4.17 \\ M\text{ = }8.174 \\ M\text{ }\approx8.2 \end{gathered}[/tex]Hence the the margin of error for the mean, rounded to the nearest tenth is 8.2