Answer :
Step 1:
Monthly sale = $x
Where x > 9,000
Step 2:
Plan A
[tex]\begin{gathered} \text{Salary = \$800.00} \\ \text{Commission is 12\% of \$x } \\ \text{Commission = }\frac{12}{100}\text{ }\times\text{ x} \\ =\text{ \$0.12x} \\ \text{Monthly salary = 0.12x + 800} \end{gathered}[/tex]Step 3
Plan B
[tex]\begin{gathered} \text{Salary = \$950.00} \\ \text{Commission = 15\% of (x - 9000)} \\ =\text{ }\frac{15x}{100}\text{ - }\frac{15\times9000}{100} \\ =0.15x\text{ - 135} \\ \text{Monthly salary = 0.15x - 1350 + 950} \\ =\text{ 0.15x }-\text{ 400} \end{gathered}[/tex]Final answer
The amount of monthly sales that plan A better than plan B
[tex]\begin{gathered} \text{0}.12x\text{ + 800 > 0.15x - 400} \\ 0.15x\text{ - 0.12x < 800 + 400} \\ 0.03x\text{ < 1200} \\ \text{x < }\frac{1200}{0.03} \\ \text{x < \$40,000} \end{gathered}[/tex]Final answer
x < 40000