👤

Answer :

Given

[tex]h(x)=\begin{cases}{-5|x|+7,x\leq-2} \\ {4x+3,-2Find

h(-3) , h(5) , h(-2) , h(0) , h(6)

Explanation

a) h(-3)

[tex]\begin{gathered} h(-3)=-5|x|+7 \\ h(-3)=-5|-3|+7 \\ h(-3)=-15+7 \\ h(-3)=-8 \end{gathered}[/tex]

b) h(5)

[tex]h(5)=6[/tex]

c) h(-2)

[tex]\begin{gathered} h(x)=-5|x|+7 \\ h(-2)=-5|-2|+7 \\ h(-2)=-10+7 \\ h(-2)=-3 \end{gathered}[/tex]

d) h(0)

[tex]\begin{gathered} h(x)=4x+3 \\ h(0)=4(0)+3 \\ h(0)=3 \end{gathered}[/tex]

e) h(6)

[tex]h(6)=6[/tex]

Final Answer

Therefore ,

h(-3) = -8

h(5) = 6

h(-2) = -3

h(0) = 3

h(6) =6