The center of the circle below is at P. If the angle < APB measures 79 °, and the radius is 7 cm., find the length of the arc AB in cm.. (round to the nearest tenth)

Solution:
Given a circle of center P;
Where
[tex]\begin{gathered} m\angle APB=79\degree \\ radius,\text{ }r=7\text{ cm} \end{gathered}[/tex]To find the length of arc, the formula is
[tex]\begin{gathered} Arc\text{ }length=\frac{\theta}{360\degree}\times2\pi r \\ Where \\ \vartheta=m\angle APB=79\degree \end{gathered}[/tex]Substitute the values of the variables into the formula above
[tex]\begin{gathered} Arc\text{ l}ength=\frac{\theta}{360\operatorname{\degree}}\times2\pi r \\ Arc\text{ l}ength=\frac{79\degree}{360\degree}\times2\times\pi\times7=9.65167=9.7\text{ cm \lparen nearest tenth\rparen} \\ Arc\text{ l}ength=9.7\text{ cm \lparen nearest tenth\rparen} \end{gathered}[/tex]Hence, the answer is option d