Answer :
We are given the following equation
[tex]2\frac{1}{7}+\frac{3}{7}(3x-5)=-4[/tex]Let us first convert the mixed number (2 1/7) to a simple fraction
[tex]2\frac{1}{7}=\frac{2\cdot7+1}{7}=\frac{14+1}{7}=\frac{15}{7}[/tex]So the equation becomes
[tex]\frac{15}{7}+\frac{3}{7}(3x-5)=-4[/tex]Now multiply the fraction 3/7 by the terms in the bracket
[tex]\frac{15}{7}+\frac{9x}{7}-\frac{15}{7}=-4[/tex]As you can see the fractions 15/7 cancels out.
[tex]\frac{9x}{7}=-4[/tex]Finally, solving for x
[tex]\begin{gathered} \frac{9x}{7}=-4 \\ 9x=-4\cdot7 \\ 9x=-28 \\ x=-\frac{28}{9} \end{gathered}[/tex]Therefore, the value of x is -28/9