Calculus early transcendental functions. Find the derivative of the function. Leave the answer as appositive integer.

SOLUTION
The given equation is
[tex]y=\frac{2}{x^4}-x^3+2[/tex][tex]\begin{gathered} \text{ given a function } \\ y=x^n \\ \frac{dy}{dx}=nx^{n+1} \end{gathered}[/tex]Then for the given function
[tex]y=\frac{2}{x^4}-x^3+2[/tex]The derivative of the function above becomes
[tex]\begin{gathered} y=2x^{-4}-x^3+2 \\ Apply\text{ the sum and difference rule of derivative } \\ \frac{dy}{dx}=(-4\times2)x^{-4-1}-3x^{3-1} \end{gathered}[/tex]Then we have
[tex]\begin{gathered} \frac{dy}{dx}=-8x^{-5}-3x^2 \\ \\ \frac{dy}{dx}=-\frac{8}{x^5}-3x^2 \end{gathered}[/tex]Therefore the derivative of the function above is
dy