👤

Answer :

Answer:

[tex]\begin{gathered} m=2 \\ YZ=25 \end{gathered}[/tex]

Explanation:

Given that Y is between X and Z;

[tex]XZ=XY+YZ[/tex]

Given;

[tex]\begin{gathered} XZ=13m+6 \\ XY=9m-3 \\ YZ=6m+1 \end{gathered}[/tex]

Let us substitute the given equation into the equation above;

[tex]\begin{gathered} XZ=XY+YZ \\ 13m+6=9m-3+6m+1 \\ 13m+6=9m+6m-3+1 \\ 13m+6=15m-2 \end{gathered}[/tex]

Let now proceed to solve the equation;

add 2 to both sides of the equation;

[tex]\begin{gathered} 13m+6+2=15m-2+2 \\ 13m+8=15m \end{gathered}[/tex]

subtract 13m from both sides;

[tex]\begin{gathered} 13m-13m+8=15m-13m \\ 8=2m \end{gathered}[/tex]

Then lastly divide both sides by 2;

[tex]\begin{gathered} \frac{8}{2}=\frac{2m}{2} \\ 4=m \\ m=2 \end{gathered}[/tex]

Since we have the value of m, let now substitute into YZ to get its value;

[tex]\begin{gathered} YZ=6m+1 \\ YZ=6(4)+1 \\ YZ=24+1 \\ YZ=25 \end{gathered}[/tex]

Therefore, the value of m and YZ is;

[tex]\begin{gathered} m=2 \\ YZ=25 \end{gathered}[/tex]