integrate f(x) dx from 4 to 10 - integrate f(x) dx from 4 to 9 = integrate f(x) dx from a to b

Given:
[tex]\int_4^{10}f(x)dx-\int_4^9f(x)dx=\int_a^bf(x)dx[/tex]Required:
To find the value of a and b.
Explanation:
Consider
[tex]\begin{gathered} \begin{equation*} \int_4^{10}f(x)dx-\int_4^9f(x)dx \end{equation*} \\ \\ =\int_4^{10}f(x)dx-(-\int_9^4f(x)_dx) \\ \\ =\int_4^{10}f(x)dx+\int_9^4f(x)dx \\ \\ =\int_9^{10}f(x)dx \end{gathered}[/tex]So the values of
[tex]\begin{gathered} a=9 \\ b=10 \end{gathered}[/tex]Final Answer:
[tex]\begin{gathered} a=9 \\ b=10 \end{gathered}[/tex]