👤

Answer :

Given,

Three masses

m₁=2 kg

m₂=3 kg

m₃=1 kg

The coordinate of mass 1 is (x₁,y₁)=(0,0)

The coordinate of mass 2 is (x₂,y₂)=(-1,0)

The coordinate of mass 3 is (x₃,y₃)=(1,1)

The x-coordinate of the center of mass is given by,

[tex]x=\frac{m_1x_1+m_2x_2+m_3x_3}{m_1+m_2+m_3}[/tex]

On substituting the known values,

[tex]\begin{gathered} x=\frac{2\times0+3\times-1+1\times1}{2+3+1} \\ =-\frac{1}{3} \end{gathered}[/tex]

And the y-coordinate of the center of mass is given by,

[tex]y=\frac{m_1y_1+m_2y_2+m_3y_3}{m_1+m_2+m_3}[/tex]

On substituting the known values,

[tex]\begin{gathered} y=\frac{2\times0+3\times0+1\times1}{2+3+1} \\ =\frac{1}{6} \end{gathered}[/tex]

Thus the center of mass is at (-1/3, 1/6)