👤

Answer :

Given:

- The Mean:

[tex]\mu=19.9[/tex]

- The Standard Deviation:

[tex]\mu=33.1[/tex]

You have to find:

[tex]P(x>8.9)[/tex]

You need to find the z-statistic using this formula:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

In this case:

[tex]x=8.9[/tex]

Then:

[tex]z=\frac{8.9-19.9}{33.1}\approx-0.332[/tex]

You need to find:

[tex]P(z>-0.332)[/tex]

By symmetry, this is equal to:

[tex]P(z<0.0332)[/tex]

Using the Normal Distribution Table, you get:

[tex]P(z<0.0332)=0.6293[/tex]

Hence, the answer is:

[tex]P(x>8.9)=0.6293[/tex]