Been looking for help for 2 hrs hopefully you can help.Hi I got help on part b so I only need help with part a.

Given:
- The Mean:
[tex]\mu=19.9[/tex]- The Standard Deviation:
[tex]\mu=33.1[/tex]You have to find:
[tex]P(x>8.9)[/tex]You need to find the z-statistic using this formula:
[tex]z=\frac{x-\mu}{\sigma}[/tex]In this case:
[tex]x=8.9[/tex]Then:
[tex]z=\frac{8.9-19.9}{33.1}\approx-0.332[/tex]You need to find:
[tex]P(z>-0.332)[/tex]By symmetry, this is equal to:
[tex]P(z<0.0332)[/tex]Using the Normal Distribution Table, you get:
[tex]P(z<0.0332)=0.6293[/tex]Hence, the answer is:
[tex]P(x>8.9)=0.6293[/tex]