👤

Answer :

Given:

The terminal point is

[tex](\frac{1}{2},\frac{3}{7})[/tex]

To find:

The six trigonometric ratios.

Explanation:

According to the problem,

The opposite side is

[tex]\frac{3}{7}[/tex]

The adjacent side is

[tex]\frac{1}{2}[/tex]

The hypotenuse side will be,

[tex]\begin{gathered} hyp^2=opp^2+adj^2 \\ hyp^2=(\frac{3}{7})^2+(\frac{1}{2})^2 \\ =\frac{9}{49}+\frac{1}{4} \\ =\frac{36+49}{196} \\ hyp^2=\frac{85}{196} \\ hyp=\sqrt{\frac{85}{196}} \\ hyp=\frac{\sqrt{85}}{\sqrt{196}} \end{gathered}[/tex]

Then, the six trigonometric ratios are,

[tex][/tex]