👤

Answer :

(2) The statements and reasons in the two-column method are presented as follows;

Statement [tex]{}[/tex]                                           Reasons

1. [tex]\overline{BD}[/tex] bisects ∠ABC [tex]{}[/tex]                          1. Given

2. ∠BAD ≅ ∠BCD   [tex]{}[/tex]                            2. Given

3. ∠ABD ≅ ∠CBD    [tex]{}[/tex]                           3. Definition of angle bisector

4. [tex]\overline{BD}[/tex] ≅ [tex]\overline{DB}[/tex]    [tex]{}[/tex]                                    4. Reflexive property

5. ΔABD ≅ ΔCBD     [tex]{}[/tex]                          5. AAS congruency postulate

(3) The two-column method used to prove the congruency of triangles ΔQRS and ΔSTU, is presented as follows;

Statement       [tex]{}[/tex]                                           Reason

1. S is the midpoint of [tex]\overline{QU}[/tex]       [tex]{}[/tex]                 1. Given

2. [tex]\overline{QR}[/tex] ≅ [tex]\overline{ST}[/tex]        [tex]{}[/tex]                                       2. Given

3.  [tex]\overline{RS}[/tex] ≅ [tex]\overline{TU}[/tex]        [tex]{}[/tex]                                       3. Given  

4.  [tex]\overline{QS}[/tex] ≅ [tex]\overline{SU}[/tex]        [tex]{}[/tex]                                  4. Definition of midpoint of [tex]\overline{QU}[/tex]

5. ΔQRS ≅ ΔSTV           [tex]{}[/tex]                            5. SSS congruency postulate

What is the two-column method used to prove  geometric statements?

The two column method consists of statements and  the associated reasons arranged sequentially side by side in a two-column tabula format.

The reasons used to prove the above statements are as follows;

Angle bisector

An angle bisector is a segment that divides an angle into  two angles of the same measure.

Reflexive property

The reflexive property of equality states that the value of an object or the measure of a dimension is equal to itself

AAS congruency postulate

AAS which is the acronym for Angle-Angle-Side  congruency, states that  if two angles and a non included side of one triangle are congruent to two angles and the non  included side of  another triangle, then  the two triangles are congruent

Midpoint of a line

The midpoint of a line is a point that divides the line into two segments of the same measure.

SSS congruency postulate

The Side-Side-Side congruency postulate states that two triangles are congruent if three sides are congruent to three sides of the other triangle

Learn more about congruent of triangles here:
https://brainly.com/question/2938476

#SPJ1