Answer :
Vertex Form
This is one way of writing a quadratic function:
[tex]f(x)= a(x-h)^2+k[/tex]
- (h,k) = vertex
- a = vertical stretch
Solving the Question
We're given:
[tex]f(x) = -6x^2 - 60x - 151[/tex]
To write a quadratic function in vertex form, we must complete the square.
⇒ Put parentheses around the first two terms containing x and x²:
[tex]f(x) = (-6x^2 - 60x) - 151[/tex]
⇒ Factor out -6 (keeping the x's in the parentheses):
[tex]f(x) = -6(x^2+10x) - 151[/tex]
⇒ To complete the square, add, inside the parentheses, the square of half the coefficient of x.
- ⇒ In this case, the coefficient of x is 10.
- ⇒ Half of this value is 5.
- ⇒ The square of 5 is 25.
- ⇒ Add this inside the parentheses:
[tex]f(x) = -6(x^2+10x+25) - 151[/tex]
⇒ Now, we cannot randomly introduce a new value into a function. To balance the +25, subtract -6(25) outside the parentheses:
[tex]f(x) = -6(x^2+10x+25) - 151-(-6*25)\\f(x) = -6(x^2+10x+25) - 151-(-150)\\f(x) = -6(x^2+10x+25) - 151+150\\f(x) = -6(x^2+10x+25) - 1[/tex]
⇒ Finally, complete the square.
- Remember: [tex](a+b)^2=a^2+2ab+b^2[/tex]
- In this case, a is x, and b is 5:
[tex]f(x) = -6(x+5)^2 - 1[/tex]
Answer
[tex]f(x) = -6(x+5)^2 - 1[/tex]
- a = -6
- h = -5
- h = -1