👤

Answer :

Answer:

[tex]\dfrac{(y+2)^2}{4} -\dfrac{(x-4)^2}{9}=1[/tex]

Step-by-step explanation:

Given equation:

[tex]-4x^2 + 9y^2 + 32x + 36y - 64 = 0[/tex]

Collect like terms:

[tex]\implies 9y^2 + 36y -4x^2+ 32x - 64 = 0[/tex]

Move the constant to the right side of the equation:

[tex]\implies 9y^2 + 36y -4x^2+ 32x =64[/tex]

Factor out 9 from the terms in y, and 4 from the terms in x:

[tex]\implies 9(y^2 + 4y) -4(x^2-8x)=64[/tex]

Add the square of half the coefficient of the term in y and x inside the parentheses on the LHS, and the distributed values on the RHS:

[tex]\implies 9\left(y^2 + 4y+\left(\dfrac{4}{2}\right)^2 \right) -4\left(x^2-8x+\left(\dfrac{-8}{2}\right)^2 \right)=64+9\left(\dfrac{4}{2}\right)^2 \right+4\left(\dfrac{-8}{2}\right)^2 \right[/tex]

Simplify:

[tex]\implies 9(y^2 + 4y+4) -4(x^2-8x+16)=64+36-64[/tex]

[tex]\implies 9(y^2 + 4y+4) -4(x^2-8x+16)=36[/tex]

Factor the perfect trinomials:

[tex]\implies 9(y+2)^2 -4(x-4)^2=36[/tex]

Divide both sides by 36:

[tex]\implies \dfrac{9(y+2)^2}{36} -\dfrac{4(x-4)^2}{36}=\dfrac{36}{36}[/tex]

Simplify:

[tex]\implies \dfrac{\diagup\!\!\!\!9(y+2)^2}{\diagup\!\!\!\! 9\cdot 4} -\dfrac{\diagup\!\!\!\!4(x-4)^2}{9 \cdot \diagup\!\!\!\!4}=1[/tex]

[tex]\implies \dfrac{(y+2)^2}{4} -\dfrac{(x-4)^2}{9}=1[/tex]

Therefore, the function is a hyperbola with:

  • Center:  (4, -2)
  • Vertices:  (4, -4) and (4, 0)
  • Co-vertices:  (1, -2) and (7, -2)
  • Foci:  (4, -2±√13)
  • Transverse axis:  x = 4
  • Conjugate axis:  y = -2
  • [tex]\textsf{Asymptotes}: \quad y =-2 \pm \left(\dfrac{2}{3}\right)(x-4)[/tex]