Answer :
Answer:
Explanation:
The enclosure will behave as black body . For black body , the formula for radiant energy is given by Stefan's law as follows
E = σ A T⁴ where σ = 5.67 x 10⁻⁸ W m⁻² T⁻⁴
Area A = .01 m²
E = 48 W
48 = .01 x 5.67 x 10⁻⁸ T⁴
T⁴ = 846.56 x 10⁸
T= 539 K
Following are the calculation to the temperature of the interior enclosure wall:
Given:
[tex]\to A_s=50\ m^2\\\\\to A_0=0.01\ m^2\\\\\to q_{rad}=48\ w\\\\\to \sigma = 5.67 \times 10^{-8}\ \frac{W}{m^{-2} T^{-4}} \\\\[/tex]
To find:
[tex]T_s=?[/tex]
Solution:
Using the value to calculate the surface is black radiates power:
[tex]\to q_{rad}=A_0 E_0 T_s\\\\\to q_{rad}=A_0 \sigma T_{s}^4\\\\\to 48=0.01 \times 5.67 \times 10^{-8} \times T_{s}^4\\\\[/tex]
[tex]\to T_{s}^4 =\frac{48}{0.01 \times 5.67 \times 10^{-8}} \\\\[/tex]
[tex]=\frac{48\times 100}{ 5.67 \times 10^{-8}} \\\\=\frac{48\times 100\times 10^{8} }{ 5.67 } \\\\=\frac{48\times 10^{10} }{ 5.67 } \\\\=8.46\times 10^{10} \\\\[/tex]
[tex]\to \bold{T_s=\pm 539.31 \ K}[/tex]
Therefore the final answer is "[tex]\bold{\pm 539.31 \ K}[/tex]".
Learn more:
brainly.com/question/10119413