Answer :
Answer:
___Y/X : ___ 1 ___ 2 ____ 3 __total
____1 _____1/9 __ 1/9 ___1/9 __ 1/3
____2_____1/9 __ 1/9 ___1/9 __ 1/3
____3_____1/9 __ 1/9 ___1/9 __ 1/3
___Total __ 1/3 __ 1/3 ___ 1/3 __ 1
Y: ____ 1 _____ 2 _____ 3
P(Y) : _ 1/3 ____ 1/3 ____ 1/3
μXY = E(X) * E(Y) = 2 * 2 = 4
Cov(X, Y) = 0
Step-by-step explanation:
Sample space = 3² = 9
___Y/X : ___ 1 ___ 2 ____ 3 __total
____1 _____1/9 __ 1/9 ___1/9 __ 1/3
____2_____1/9 __ 1/9 ___1/9 __ 1/3
____3_____1/9 __ 1/9 ___1/9 __ 1/3
___Total __ 1/3 __ 1/3 ___ 1/3 __ 1
The probability density function :
X : __ 1 ____ 2 ____ 3
P(X) : 1/3 ___1/3 ____ 1/3
μX =E(X) = ΣX*P(X) = (1*1/3) + (2*1/3) * (3*1/3)
= 1/3 + 2/3 + 1 = (1 + 2 + 3) / 3 = 6/3 = 2
Y: ____ 1 _____ 2 _____ 3
P(Y) : _ 1/3 ____ 1/3 ____ 1/3
μY =E(Y) = ΣY*P(Y) = (1*1/3) + (2*1/3) * (3*1/3)
= 1/3 + 2/3 + 1 = (1 + 2 + 3) / 3 = 6/3 = 2
μXY = E(X) * E(Y) = 2 * 2 = 4
Cov(X, Y) = 0
X and Y are independent