Answer :
Answer:
Mechanic 1: $55 per hour
Mechanic 2: $105 per hour
Step-by-step explanation:
Given
Represent the rate of the first mechanic with x and the second with y.
So, we have:
[tex]x + y = 160[/tex]
The total earnings is: $1850, so we have:
[tex]5x + 15y = 1850[/tex]
Required
Determine the rate of each
The equations are:
[tex]x + y = 160[/tex] --- (1)
[tex]5x + 15y = 1850[/tex] --- (2)
Divide (2) through by 5
[tex]x + 3y = 370[/tex] --- (3)
Subtract (1) from (3)
[tex]x - x + 3y - y = 370 - 160[/tex]
[tex]2y = 210[/tex]
Divide through by 2
[tex]y = \frac{210}{2}[/tex]
[tex]y = 105[/tex]
Substitute 105 for y in (1)
[tex]x + y = 160[/tex]
Make x the subject
[tex]x = 160 - y[/tex]
Substitute 105 for y
[tex]x = 160 - 105[/tex]
[tex]x = 55[/tex]
Hence:
Mechanic 1: $55 per hour
Mechanic 2: $105 per hour