Answer :
Solution
We have the following number:
[tex]1-\sqrt[]{3}i[/tex]and we have:
[tex]a=1,b=-\sqrt[]{3}[/tex]And we can write the trigonometric form as:
[tex]r(\cos \theta+i\sin \theta)[/tex]the radius is:
[tex]r=\sqrt[]{(1)^2+(-\sqrt[]{3})^2}=\sqrt[]{4}=2[/tex]The angle is:
[tex]\theta=\tan ^{-1}(\frac{-\sqrt[]{3}}{1})=\frac{5\pi}{3}[/tex]Then the answer is:
[tex]2\lbrack\cos (\frac{5\pi}{3})+i\sin (\frac{5\pi}{3})\rbrack[/tex]