Answer :
Given:
[tex]\begin{gathered} Steve\text{ height}(H_1)=6ft \\ Steve\text{ shadow}(S_1)=12ft \\ Silo^{\prime}s\text{ shadow}(S_2)=180ft \end{gathered}[/tex]To Determine: The height of the silo
Solution
Let us compare the ratio of Steve's height and shadow with the height and shadow of the silo
[tex](H_2)=height\text{ of the silo}[/tex]The ratio would be
[tex]\begin{gathered} \frac{H_1}{S_1}=\frac{H_2}{S_2} \\ \frac{6}{12}=\frac{H_2}{180} \end{gathered}[/tex]Determine the height of the silo by cross-multiplying
[tex]\begin{gathered} 12H_2=6\times180 \\ H_2=\frac{6\times180}{12} \\ H_2=90ft \end{gathered}[/tex]Hence, the silo is 90ft tall