how many liters of each of a 15% acid solution and a 25% acid solution must be used to produce 80 liters of a 20% acid solution?

Given:
Total produce = 80 liters
15% Acid solution and 25% acid solution
Find-:
How many litres of each
Explanation-:
Let
[tex]\begin{gathered} x=\text{ Liters of }15\% \\ \\ y=\text{ Liters of }25\% \end{gathered}[/tex]Total 80 litres
[tex]x+y=80............(1)[/tex][tex]\begin{gathered} 15x+25y=80\times20 \\ \\ 3x+5y=320..............(2) \end{gathered}[/tex]eq(2) - 3eq(1) is:
[tex]\begin{gathered} x+y=80 \\ \\ 3x+3y=240..........(1^{\prime}) \end{gathered}[/tex]So, the value of "y" is:
[tex]\begin{gathered} 3x+5y-3x-3y=320-240 \\ \\ 2y=80 \\ \\ y=\frac{80}{2} \\ \\ y=40 \end{gathered}[/tex]So x is 40
Then,
[tex]\begin{gathered} 40\text{ liters of }15\%\text{ acid solution } \\ \\ 40\text{ liters of }25\%\text{ acid soluion} \end{gathered}[/tex]